Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3+2i)\cdot(-1+i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-3+3i-2i+2i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2i^2+i-3\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3+2i}\right) $ by each term in $ \left( -1+i\right) $. $$ \left( \color{blue}{3+2i}\right) \cdot \left( -1+i\right) = -3+3i-2i+2i^2 $$ |
| ② | Combine like terms: $$ -3+ \color{blue}{3i} \color{blue}{-2i} +2i^2 = 2i^2+ \color{blue}{i} -3 $$ |