Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3-i)\cdot(-10-6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-30-18i+10i+6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6i^2-8i-30\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3-i}\right) $ by each term in $ \left( -10-6i\right) $. $$ \left( \color{blue}{3-i}\right) \cdot \left( -10-6i\right) = -30-18i+10i+6i^2 $$ |
| ② | Combine like terms: $$ -30 \color{blue}{-18i} + \color{blue}{10i} +6i^2 = 6i^2 \color{blue}{-8i} -30 $$ |