Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3-4i)\cdot(2-i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6-3i-8i+4i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4i^2-11i+6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3-4i}\right) $ by each term in $ \left( 2-i\right) $. $$ \left( \color{blue}{3-4i}\right) \cdot \left( 2-i\right) = 6-3i-8i+4i^2 $$ |
| ② | Combine like terms: $$ 6 \color{blue}{-3i} \color{blue}{-8i} +4i^2 = 4i^2 \color{blue}{-11i} +6 $$ |