Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3-3i)\cdot(-2+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-6+6i+6i-6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6i^2+12i-6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3-3i}\right) $ by each term in $ \left( -2+2i\right) $. $$ \left( \color{blue}{3-3i}\right) \cdot \left( -2+2i\right) = -6+6i+6i-6i^2 $$ |
| ② | Combine like terms: $$ -6+ \color{blue}{6i} + \color{blue}{6i} -6i^2 = -6i^2+ \color{blue}{12i} -6 $$ |