Tap the blue circles to see an explanation.
| $$ \begin{aligned}3-2i\frac{1+2i}{(2-i)\cdot(2+3i)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3-2i\frac{1+2i}{4+6i-2i-3i^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3-2i\frac{1+2i}{-3i^2+4i+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3-2i\frac{1+2i}{3+4i+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}3-2i\frac{1+2i}{4i+7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}3-2i\frac{3+2i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}3-\frac{4i^2+6i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}3-\frac{-4+6i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-6i+43}{13}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2-i}\right) $ by each term in $ \left( 2+3i\right) $. $$ \left( \color{blue}{2-i}\right) \cdot \left( 2+3i\right) = 4+6i-2i-3i^2 $$ |
| ② | Combine like terms: $$ 4+ \color{blue}{6i} \color{blue}{-2i} -3i^2 = -3i^2+ \color{blue}{4i} +4 $$ |
| ③ | $$ -3i^2 = -3 \cdot (-1) = 3 $$ |
| ④ | Combine like terms: $$ \color{blue}{3} +4i+ \color{blue}{4} = 4i+ \color{blue}{7} $$ |
| ⑤ | Divide $ \, 1+2i \, $ by $ \, 7+4i \, $ to get $\,\, \dfrac{3+2i}{13} $. ( view steps ) |
| ⑥ | Multiply $2i$ by $ \dfrac{3+2i}{13} $ to get $ \dfrac{4i^2+6i}{13} $. Step 1: Write $ 2i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2i \cdot \frac{3+2i}{13} & \xlongequal{\text{Step 1}} \frac{2i}{\color{red}{1}} \cdot \frac{3+2i}{13} \xlongequal{\text{Step 2}} \frac{ 2i \cdot \left( 3+2i \right) }{ 1 \cdot 13 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6i+4i^2 }{ 13 } = \frac{4i^2+6i}{13} \end{aligned} $$ |
| ⑦ | $$ 4i^2 = 4 \cdot (-1) = -4 $$ |
| ⑧ | Subtract $ \dfrac{-4+6i}{13} $ from $ 3 $ to get $ \dfrac{ \color{purple}{ -6i+43 } }{ 13 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |