Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3-\frac{1}{2}i)\cdot(-1+i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3-\frac{i}{2})\cdot(-1+i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-i+6}{2}\cdot(-1+i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-i^2+7i-6}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1+7i-6}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{7i-5}{2}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{2} $ by $ i $ to get $ \dfrac{ i }{ 2 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot i & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot i }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ i }{ 2 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{i}{2} $ from $ 3 $ to get $ \dfrac{ \color{purple}{ -i+6 } }{ 2 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $ \dfrac{-i+6}{2} $ by $ -1+i $ to get $ \dfrac{-i^2+7i-6}{2} $. Step 1: Write $ -1+i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-i+6}{2} \cdot -1+i & \xlongequal{\text{Step 1}} \frac{-i+6}{2} \cdot \frac{-1+i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -i+6 \right) \cdot \left( -1+i \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ i-i^2-6+6i }{ 2 } = \frac{-i^2+7i-6}{2} \end{aligned} $$ |
| ④ | $$ -i^2 = -(-1) = 1 $$ |
| ⑤ | Simplify numerator $$ \color{blue}{1} +7i \color{blue}{-6} = 7i \color{blue}{-5} $$ |