Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3+5j)\cdot(3+2j)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9+6j+15j+10j^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10j^2+21j+9\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3+5j}\right) $ by each term in $ \left( 3+2j\right) $. $$ \left( \color{blue}{3+5j}\right) \cdot \left( 3+2j\right) = 9+6j+15j+10j^2 $$ |
| ② | Combine like terms: $$ 9+ \color{blue}{6j} + \color{blue}{15j} +10j^2 = 10j^2+ \color{blue}{21j} +9 $$ |