Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{n}((1+3\frac{i}{n})^2-2\cdot(1+3\frac{i}{n}))& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3}{n}((1+3\frac{i}{n})^2-2\cdot(1+\frac{3i}{n})) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3}{n}((1+3\frac{i}{n})^2-2\frac{3i+n}{n}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3}{n}((1+3\frac{i}{n})^2-\frac{6i+2n}{n})\end{aligned} $$ | |
| ① | Multiply $3$ by $ \dfrac{i}{n} $ to get $ \dfrac{ 3i }{ n } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{i}{n} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{i}{n} \xlongequal{\text{Step 2}} \frac{ 3 \cdot i }{ 1 \cdot n } \xlongequal{\text{Step 3}} \frac{ 3i }{ n } \end{aligned} $$ |
| ② | Add $1$ and $ \dfrac{3i}{n} $ to get $ \dfrac{ \color{purple}{ 3i+n } }{ n }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $2$ by $ \dfrac{3i+n}{n} $ to get $ \dfrac{ 6i+2n }{ n } $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{3i+n}{n} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{3i+n}{n} \xlongequal{\text{Step 2}} \frac{ 2 \cdot \left( 3i+n \right) }{ 1 \cdot n } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6i+2n }{ n } \end{aligned} $$ |