Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3i+1}{3i+2}-(2i+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{11+3i}{13}-(2i+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-23i-15}{13}\end{aligned} $$ | |
| ① | Divide $ \, 1+3i \, $ by $ \, 2+3i \, $ to get $\,\, \dfrac{11+3i}{13} $. ( view steps ) |
| ② | Subtract $2i+2$ from $ \dfrac{11+3i}{13} $ to get $ \dfrac{ \color{purple}{ -23i-15 } }{ 13 }$. Step 1: Write $ 2i+2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |