Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2x-5i)(-4x)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x-5i)\cdot-64x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-128x^4+320ix^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}320ix^3-128x^4\end{aligned} $$ | |
| ① | $$ \left( -4x \right)^3 = (-4)^3x^3 = -64x^3 $$ |
| ② | $$ \left( \color{blue}{2x-5i}\right) \cdot -64x^3 = -128x^4+320ix^3 $$ |
| ③ | Combine like terms: $$ 320ix^3-128x^4 = 320ix^3-128x^4 $$ |