Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2+3i)\cdot(2+3i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4+6i+6i+9i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9i^2+12i+4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2+3i}\right) $ by each term in $ \left( 2+3i\right) $. $$ \left( \color{blue}{2+3i}\right) \cdot \left( 2+3i\right) = 4+6i+6i+9i^2 $$ |
| ② | Combine like terms: $$ 4+ \color{blue}{6i} + \color{blue}{6i} +9i^2 = 9i^2+ \color{blue}{12i} +4 $$ |