Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2+31)\cdot(0-2i)\cdot(3+i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}33\cdot(0-2i)\cdot(3+i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(0-66i)\cdot(3+i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}0+0i-198i-66i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }00i-198i-66i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-66i^2-198i\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{2} + \color{blue}{31} = \color{blue}{33} $$ |
| ② | Multiply $ \color{blue}{33} $ by $ \left( 0-2i\right) $ $$ \color{blue}{33} \cdot \left( 0-2i\right) = 0-66i $$ |
| ③ | Multiply each term of $ \left( \color{blue}{0-66i}\right) $ by each term in $ \left( 3+i\right) $. $$ \left( \color{blue}{0-66i}\right) \cdot \left( 3+i\right) = 00i-198i-66i^2 $$ |
| ④ | Combine like terms: $$ 0 \color{blue}{0i} \color{blue}{-198i} -66i^2 = -66i^2 \color{blue}{-198i} $$ |