Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2+2i}{1-i}-(3+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2i-(3+2i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2i-3-2i \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{2i}-3 -\cancel{2i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-3\end{aligned} $$ | |
| ① | Divide $ \, 2+2i \, $ by $ \, 1-i \, $ to get $\,\, 2i $. ( view steps ) |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3+2i \right) = -3-2i $$ |
| ③ | Combine like terms: $$ \, \color{blue}{ \cancel{2i}} \,-3 \, \color{blue}{ -\cancel{2i}} \, = -3 $$ |