Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2i+6)\cdot(3-4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6i-8i^2+18-24i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8i^2-18i+18\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2i+6}\right) $ by each term in $ \left( 3-4i\right) $. $$ \left( \color{blue}{2i+6}\right) \cdot \left( 3-4i\right) = 6i-8i^2+18-24i $$ |
| ② | Combine like terms: $$ \color{blue}{6i} -8i^2+18 \color{blue}{-24i} = -8i^2 \color{blue}{-18i} +18 $$ |