Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2i+3)(4i-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8i^2-8i+12i-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8i^2+4i-12\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2i+3}\right) $ by each term in $ \left( 4i-4\right) $. $$ \left( \color{blue}{2i+3}\right) \cdot \left( 4i-4\right) = 8i^2-8i+12i-12 $$ |
| ② | Combine like terms: $$ 8i^2 \color{blue}{-8i} + \color{blue}{12i} -12 = 8i^2+ \color{blue}{4i} -12 $$ |