Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2i-3)(i-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2i^2-10i-3i+15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2i^2-13i+15\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2i-3}\right) $ by each term in $ \left( i-5\right) $. $$ \left( \color{blue}{2i-3}\right) \cdot \left( i-5\right) = 2i^2-10i-3i+15 $$ |
| ② | Combine like terms: $$ 2i^2 \color{blue}{-10i} \color{blue}{-3i} +15 = 2i^2 \color{blue}{-13i} +15 $$ |