Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2i}{2+i}+\frac{5}{2-i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2+4i}{5}+\frac{5}{2-i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-4i^2+6i+29}{-5i+10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4+6i+29}{-5i+10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{6i+33}{-5i+10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{12+9i}{5}\end{aligned} $$ | |
| ① | Divide $ \, 2i \, $ by $ \, 2+i \, $ to get $\,\, \dfrac{2+4i}{5} $. ( view steps ) |
| ② | Add $ \dfrac{2+4i}{5} $ and $ \dfrac{5}{2-i} $ to get $ \dfrac{ \color{purple}{ -4i^2+6i+29 } }{ -5i+10 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ③ | $$ -4i^2 = -4 \cdot (-1) = 4 $$ |
| ④ | Simplify numerator $$ \color{blue}{4} +6i+ \color{blue}{29} = 6i+ \color{blue}{33} $$ |
| ⑤ | Divide $ \, 33+6i \, $ by $ \, 10-5i \, $ to get $\,\, \dfrac{12+9i}{5} $. ( view steps ) |