Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{24+64j\cdot2-6\frac{j}{2x}+\frac{16}{x}}{10-\frac{j}{2c}+16j\cdot2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{24+128j-\frac{6j}{2x}+\frac{16}{x}}{\frac{20c-j}{2c}+16j\cdot2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{\frac{256jx-6j+48x}{2x}+\frac{16}{x}}{\frac{20c-j}{2c}+32j} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{\frac{256jx^2-6jx+48x^2+32x}{2x^2}}{\frac{64cj+20c-j}{2c}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{512cjx^2-12cjx+96cx^2+64cx}{128cjx^2+40cx^2-2jx^2} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{256cjx^2-6cjx+48cx^2+32cx}{64cjx^2+20cx^2-jx^2}\end{aligned} $$ | |
| ① | $$ 64 j \cdot 2 = 128 j $$ |
| ② | Multiply $6$ by $ \dfrac{j}{2x} $ to get $ \dfrac{ 6j }{ 2x } $. Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6 \cdot \frac{j}{2x} & \xlongequal{\text{Step 1}} \frac{6}{\color{red}{1}} \cdot \frac{j}{2x} \xlongequal{\text{Step 2}} \frac{ 6 \cdot j }{ 1 \cdot 2x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6j }{ 2x } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{j}{2c} $ from $ 10 $ to get $ \dfrac{ \color{purple}{ 20c-j } }{ 2c }$. Step 1: Write $ 10 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Subtract $ \dfrac{6j}{2x} $ from $ 24+128j $ to get $ \dfrac{ \color{purple}{ 256jx-6j+48x } }{ 2x }$. Step 1: Write $ 24+128j $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑤ | $$ 16 j \cdot 2 = 32 j $$ |
| ⑥ | Add $ \dfrac{256jx-6j+48x}{2x} $ and $ \dfrac{16}{x} $ to get $ \dfrac{ \color{purple}{ 256jx^2-6jx+48x^2+32x } }{ 2x^2 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Add $ \dfrac{20c-j}{2c} $ and $ 32j $ to get $ \dfrac{ \color{purple}{ 64cj+20c-j } }{ 2c }$. Step 1: Write $ 32j $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Divide $ \dfrac{256jx^2-6jx+48x^2+32x}{2x^2} $ by $ \dfrac{64cj+20c-j}{2c} $ to get $ \dfrac{ 512cjx^2-12cjx+96cx^2+64cx }{ 128cjx^2+40cx^2-2jx^2 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{256jx^2-6jx+48x^2+32x}{2x^2} }{ \frac{\color{blue}{64cj+20c-j}}{\color{blue}{2c}} } & \xlongequal{\text{Step 1}} \frac{256jx^2-6jx+48x^2+32x}{2x^2} \cdot \frac{\color{blue}{2c}}{\color{blue}{64cj+20c-j}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 256jx^2-6jx+48x^2+32x \right) \cdot 2c }{ 2x^2 \cdot \left( 64cj+20c-j \right) } \xlongequal{\text{Step 3}} \frac{ 512cjx^2-12cjx+96cx^2+64cx }{ 128cjx^2+40cx^2-2jx^2 } \end{aligned} $$ |