Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2.61825-4.69625j)\cdot(1+j)& \xlongequal{ }(2.61825-4j)\cdot(1+j) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2+2j-4j-4j^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4j^2-2j+2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2-4j}\right) $ by each term in $ \left( 1+j\right) $. $$ \left( \color{blue}{2-4j}\right) \cdot \left( 1+j\right) = 2+2j-4j-4j^2 $$ |
| ② | Combine like terms: $$ 2+ \color{blue}{2j} \color{blue}{-4j} -4j^2 = -4j^2 \color{blue}{-2j} +2 $$ |