Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2-j\cdot9)\cdot(8-j\cdot6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16-12j-72j+54j^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}54j^2-84j+16\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2-9j}\right) $ by each term in $ \left( 8-6j\right) $. $$ \left( \color{blue}{2-9j}\right) \cdot \left( 8-6j\right) = 16-12j-72j+54j^2 $$ |
| ② | Combine like terms: $$ 16 \color{blue}{-12j} \color{blue}{-72j} +54j^2 = 54j^2 \color{blue}{-84j} +16 $$ |