Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2-i)\cdot(3+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6+4i-3i-2i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2i^2+i+6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2-i}\right) $ by each term in $ \left( 3+2i\right) $. $$ \left( \color{blue}{2-i}\right) \cdot \left( 3+2i\right) = 6+4i-3i-2i^2 $$ |
| ② | Combine like terms: $$ 6+ \color{blue}{4i} \color{blue}{-3i} -2i^2 = -2i^2+ \color{blue}{i} +6 $$ |