Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2-4i}{6}i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-4i^2+2i}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4+2i}{6}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2-4i}{6} $ by $ i $ to get $ \dfrac{-4i^2+2i}{6} $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2-4i}{6} \cdot i & \xlongequal{\text{Step 1}} \frac{2-4i}{6} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 2-4i \right) \cdot i }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2i-4i^2 }{ 6 } = \frac{-4i^2+2i}{6} \end{aligned} $$ |
| ② | $$ -4i^2 = -4 \cdot (-1) = 4 $$ |