Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{2}{a}+\frac{7}{b}}{b}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{7a+2b}{ab}}{b} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7a+2b}{ab^2}\end{aligned} $$ | |
| ① | Add $ \dfrac{2}{a} $ and $ \dfrac{7}{b} $ to get $ \dfrac{ \color{purple}{ 7a+2b } }{ ab }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{7a+2b}{ab} $ by $ b $ to get $ \dfrac{ 7a+2b }{ ab^2 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{7a+2b}{ab} }{b} & \xlongequal{\text{Step 1}} \frac{7a+2b}{ab} \cdot \frac{\color{blue}{1}}{\color{blue}{b}} \xlongequal{\text{Step 2}} \frac{ \left( 7a+2b \right) \cdot 1 }{ ab \cdot b } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 7a+2b }{ ab^2 } \end{aligned} $$ |