Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{3}i\cdot(4-5i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2i}{3}\cdot(4-5i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-10i^2+8i}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{10+8i}{3}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2}{3} $ by $ i $ to get $ \dfrac{ 2i }{ 3 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot i & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot i }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 2i }{ 3 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{2i}{3} $ by $ 4-5i $ to get $ \dfrac{-10i^2+8i}{3} $. Step 1: Write $ 4-5i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2i}{3} \cdot 4-5i & \xlongequal{\text{Step 1}} \frac{2i}{3} \cdot \frac{4-5i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2i \cdot \left( 4-5i \right) }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8i-10i^2 }{ 3 } = \frac{-10i^2+8i}{3} \end{aligned} $$ |
| ③ | $$ -10i^2 = -10 \cdot (-1) = 10 $$ |