Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1+isqt\cdot2)\cdot(4-isqrt\cdot3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4-3iqrst+8iqst-6i^2q^2rs^2t^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6i^2q^2rs^2t^2-3iqrst+8iqst+4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{1+2iqst}\right) $ by each term in $ \left( 4-3iqrst\right) $. $$ \left( \color{blue}{1+2iqst}\right) \cdot \left( 4-3iqrst\right) = 4-3iqrst+8iqst-6i^2q^2rs^2t^2 $$ |
| ② | Combine like terms: $$ -6i^2q^2rs^2t^2-3iqrst+8iqst+4 = -6i^2q^2rs^2t^2-3iqrst+8iqst+4 $$ |