Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1+i)\cdot(4-3i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4-3i+4i-3i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3i^2+i+4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{1+i}\right) $ by each term in $ \left( 4-3i\right) $. $$ \left( \color{blue}{1+i}\right) \cdot \left( 4-3i\right) = 4-3i+4i-3i^2 $$ |
| ② | Combine like terms: $$ 4 \color{blue}{-3i} + \color{blue}{4i} -3i^2 = -3i^2+ \color{blue}{i} +4 $$ |