Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1+i)\cdot(1+5i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1+5i+i+5i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5i^2+6i+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{1+i}\right) $ by each term in $ \left( 1+5i\right) $. $$ \left( \color{blue}{1+i}\right) \cdot \left( 1+5i\right) = 1+5i+i+5i^2 $$ |
| ② | Combine like terms: $$ 1+ \color{blue}{5i} + \color{blue}{i} +5i^2 = 5i^2+ \color{blue}{6i} +1 $$ |