Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1+i)\cdot(-4-4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-4-4i-4i-4i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4i^2-8i-4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{1+i}\right) $ by each term in $ \left( -4-4i\right) $. $$ \left( \color{blue}{1+i}\right) \cdot \left( -4-4i\right) = -4-4i-4i-4i^2 $$ |
| ② | Combine like terms: $$ -4 \color{blue}{-4i} \color{blue}{-4i} -4i^2 = -4i^2 \color{blue}{-8i} -4 $$ |