Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1+6i)(2i+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2i+8+12i^2+48i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12i^2+50i+8\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{1+6i}\right) $ by each term in $ \left( 2i+8\right) $. $$ \left( \color{blue}{1+6i}\right) \cdot \left( 2i+8\right) = 2i+8+12i^2+48i $$ |
| ② | Combine like terms: $$ \color{blue}{2i} +8+12i^2+ \color{blue}{48i} = 12i^2+ \color{blue}{50i} +8 $$ |