Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{1+\frac{3}{2}}{5}}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{\frac{5}{2}}{5}}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{\frac{1}{2}}{1}}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\frac{1}{2}}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1}{4}\end{aligned} $$ | |
| ① | Simplify numerator and denominator |
| ② | Divide both numerator and denominator by 5. |
| ③ | Remove 1 from denominator. |
| ④ | Divide $ \dfrac{1}{2} $ by $ 2 $ to get $ \dfrac{1}{4} $. To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. $$ \begin{aligned} \frac{ \frac{1}{2} }{2} = \frac{1}{2} \cdot \frac{\color{blue}{1}}{\color{blue}{2}} = \frac{1}{4} \end{aligned} $$ |