Tap the blue circles to see an explanation.
| $$ \begin{aligned}(12-6i)\cdot(3-10i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}36-120i-18i+60i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}60i^2-138i+36\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{12-6i}\right) $ by each term in $ \left( 3-10i\right) $. $$ \left( \color{blue}{12-6i}\right) \cdot \left( 3-10i\right) = 36-120i-18i+60i^2 $$ |
| ② | Combine like terms: $$ 36 \color{blue}{-120i} \color{blue}{-18i} +60i^2 = 60i^2 \color{blue}{-138i} +36 $$ |