Tap the blue circles to see an explanation.
| $$ \begin{aligned}100 \cdot \frac{p+\frac{1}{314i}n+d\cdot314i}{(314i)^2+0.2\cdot314i+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}100 \cdot \frac{p+\frac{n}{314i}+d\cdot314i}{98596i^2+0i+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}100 \cdot \frac{\frac{314ip+n}{314i}+d\cdot314i}{-98596+0i+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}100 \cdot \frac{\frac{314ip+n}{314i}+314di}{-98596+0i+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}100 \cdot \frac{\frac{98596di^2+314ip+n}{314i}}{-98596+0i+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}100 \cdot \frac{\frac{98596di^2+314ip+n}{314i}}{-98595} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}100 \cdot \frac{98596di^2+314ip+n}{-30958830i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{9859600di^2+31400ip+100n}{-30958830i}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{314i} $ by $ n $ to get $ \dfrac{ n }{ 314i } $. Step 1: Write $ n $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{314i} \cdot n & \xlongequal{\text{Step 1}} \frac{1}{314i} \cdot \frac{n}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot n }{ 314i \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ n }{ 314i } \end{aligned} $$ |
| ② | $$ \left( 314i \right)^2 = 314^2i^2 = 98596i^2 $$ |
| ③ | Add $p$ and $ \dfrac{n}{314i} $ to get $ \dfrac{ \color{purple}{ 314ip+n } }{ 314i }$. Step 1: Write $ p $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | $$ 98596i^2 = 98596 \cdot (-1) = -98596 $$ |
| ⑤ | $$ 98596i^2 = 98596 \cdot (-1) = -98596 $$ |
| ⑥ | Add $ \dfrac{314ip+n}{314i} $ and $ 314di $ to get $ \dfrac{ \color{purple}{ 98596di^2+314ip+n } }{ 314i }$. Step 1: Write $ 314di $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑦ | $$ 98596i^2 = 98596 \cdot (-1) = -98596 $$ |
| ⑧ | Combine like terms: $$ \color{blue}{-98596} 0i+ \color{blue}{1} = \color{blue}{-98595} $$ |
| ⑨ | Divide $ \dfrac{98596di^2+314ip+n}{314i} $ by $ -98595 $ to get $ \dfrac{ 98596di^2+314ip+n }{ -30958830i } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{98596di^2+314ip+n}{314i} }{-98595} & \xlongequal{\text{Step 1}} \frac{98596di^2+314ip+n}{314i} \cdot \frac{\color{blue}{1}}{\color{blue}{-98595}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 98596di^2+314ip+n \right) \cdot 1 }{ 314i \cdot \left( -98595 \right) } \xlongequal{\text{Step 3}} \frac{ 98596di^2+314ip+n }{ -30958830i } \end{aligned} $$ |
| ⑩ | Multiply $100$ by $ \dfrac{98596di^2+314ip+n}{-30958830i} $ to get $ \dfrac{ 9859600di^2+31400ip+100n }{ -30958830i } $. Step 1: Write $ 100 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 100 \cdot \frac{98596di^2+314ip+n}{-30958830i} & \xlongequal{\text{Step 1}} \frac{100}{\color{red}{1}} \cdot \frac{98596di^2+314ip+n}{-30958830i} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 100 \cdot \left( 98596di^2+314ip+n \right) }{ 1 \cdot \left( -30958830i \right) } \xlongequal{\text{Step 3}} \frac{ 9859600di^2+31400ip+100n }{ -30958830i } \end{aligned} $$ |