Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1-2i)(6i-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6i-2-12i^2+4i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-12i^2+10i-2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{1-2i}\right) $ by each term in $ \left( 6i-2\right) $. $$ \left( \color{blue}{1-2i}\right) \cdot \left( 6i-2\right) = 6i-2-12i^2+4i $$ |
| ② | Combine like terms: $$ \color{blue}{6i} -2-12i^2+ \color{blue}{4i} = -12i^2+ \color{blue}{10i} -2 $$ |