Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1+8i)\cdot(6-i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6-i+48i-8i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8i^2+47i+6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{1+8i}\right) $ by each term in $ \left( 6-i\right) $. $$ \left( \color{blue}{1+8i}\right) \cdot \left( 6-i\right) = 6-i+48i-8i^2 $$ |
| ② | Combine like terms: $$ 6 \color{blue}{-i} + \color{blue}{48i} -8i^2 = -8i^2+ \color{blue}{47i} +6 $$ |