Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{4}-\frac{2}{3(u+2)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{4}-\frac{2}{3u+6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3u-2}{12u+24}\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( u+2\right) $ $$ \color{blue}{3} \cdot \left( u+2\right) = 3u+6 $$ |
| ② | Subtract $ \dfrac{2}{3u+6} $ from $ \dfrac{1}{4} $ to get $ \dfrac{ \color{purple}{ 3u-2 } }{ 12u+24 }$. To subtract raitonal expressions, both fractions must have the same denominator. |