Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{1}{3}+\frac{x^2}{36}}{x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x^2+12}{36}}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2+12}{36x}\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{3} $ and $ \dfrac{x^2}{36} $ to get $ \dfrac{ \color{purple}{ x^2+12 } }{ 36 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{x^2+12}{36} $ by $ x $ to get $ \dfrac{ x^2+12 }{ 36x } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x^2+12}{36} }{x} & \xlongequal{\text{Step 1}} \frac{x^2+12}{36} \cdot \frac{\color{blue}{1}}{\color{blue}{x}} \xlongequal{\text{Step 2}} \frac{ \left( x^2+12 \right) \cdot 1 }{ 36 \cdot x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2+12 }{ 36x } \end{aligned} $$ |