Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{1}{2}+\frac{8}{3}}{\frac{2}{x^2}+\frac{x}{4}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{19}{6}}{\frac{x^3+8}{4x^2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{76x^2}{6x^3+48}\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{2} $ and $ \dfrac{8}{3} $ to get $ \dfrac{ \color{purple}{ 19 } }{ 6 }$. To add fractions they must have the same denominator. |
| ② | Add $ \dfrac{2}{x^2} $ and $ \dfrac{x}{4} $ to get $ \dfrac{ \color{purple}{ x^3+8 } }{ 4x^2 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Divide $ \dfrac{19}{6} $ by $ \dfrac{x^3+8}{4x^2} $ to get $ \dfrac{ 76x^2 }{ 6x^3+48 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{19}{6} }{ \frac{\color{blue}{x^3+8}}{\color{blue}{4x^2}} } & \xlongequal{\text{Step 1}} \frac{19}{6} \cdot \frac{\color{blue}{4x^2}}{\color{blue}{x^3+8}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 19 \cdot 4x^2 }{ 6 \cdot \left( x^3+8 \right) } \xlongequal{\text{Step 3}} \frac{ 76x^2 }{ 6x^3+48 } \end{aligned} $$ |