Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}+3i-(\frac{1}{5}+\frac{4}{3}i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6i+1}{2}-(\frac{1}{5}+\frac{4i}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{6i+1}{2}-\frac{20i+3}{15} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{50i+9}{30}\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{2} $ and $ 3i $ to get $ \dfrac{ \color{purple}{ 6i+1 } }{ 2 }$. Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $ \dfrac{4}{3} $ by $ i $ to get $ \dfrac{ 4i }{ 3 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4}{3} \cdot i & \xlongequal{\text{Step 1}} \frac{4}{3} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4 \cdot i }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 4i }{ 3 } \end{aligned} $$ |
| ③ | Add $ \dfrac{1}{2} $ and $ 3i $ to get $ \dfrac{ \color{purple}{ 6i+1 } }{ 2 }$. Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $ \dfrac{1}{5} $ and $ \dfrac{4i}{3} $ to get $ \dfrac{ \color{purple}{ 20i+3 } }{ 15 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Subtract $ \dfrac{20i+3}{15} $ from $ \dfrac{6i+1}{2} $ to get $ \dfrac{ \color{purple}{ 50i+9 } }{ 30 }$. To subtract raitonal expressions, both fractions must have the same denominator. |