Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{1}{2}-i}{-1+\frac{1}{3}i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{-2i+1}{2}}{-1+\frac{i}{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\frac{-2i+1}{2}}{\frac{i-3}{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-6i+3}{2i-6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{-3+3i}{4}\end{aligned} $$ | |
| ① | Subtract $i$ from $ \dfrac{1}{2} $ to get $ \dfrac{ \color{purple}{ -2i+1 } }{ 2 }$. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $ \dfrac{1}{3} $ by $ i $ to get $ \dfrac{ i }{ 3 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot i & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot i }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ i }{ 3 } \end{aligned} $$ |
| ③ | Subtract $i$ from $ \dfrac{1}{2} $ to get $ \dfrac{ \color{purple}{ -2i+1 } }{ 2 }$. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $-1$ and $ \dfrac{i}{3} $ to get $ \dfrac{ \color{purple}{ i-3 } }{ 3 }$. Step 1: Write $ -1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Divide $ \dfrac{-2i+1}{2} $ by $ \dfrac{i-3}{3} $ to get $ \dfrac{ -6i+3 }{ 2i-6 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{-2i+1}{2} }{ \frac{\color{blue}{i-3}}{\color{blue}{3}} } & \xlongequal{\text{Step 1}} \frac{-2i+1}{2} \cdot \frac{\color{blue}{3}}{\color{blue}{i-3}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( -2i+1 \right) \cdot 3 }{ 2 \cdot \left( i-3 \right) } \xlongequal{\text{Step 3}} \frac{ -6i+3 }{ 2i-6 } \end{aligned} $$ |
| ⑥ | Divide $ \, 3-6i \, $ by $ \, -6+2i \, $ to get $\,\, \dfrac{-3+3i}{4} $. ( view steps ) |