Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-m^4n^2)^5\cdot2m^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-m^{20}n^{10}\cdot2m^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2m^{22}n^{10}\end{aligned} $$ | |
| ① | $$ \left( -m^4n^2 \right)^5 = (-1)^5 \left( m^4 \right)^5 \left( n^2 \right)^5 = -m^{20}n^{10} $$ |
| ② | $$ -1 m^{20} n^{10} \cdot 2 m^2 = -2 m^{20 + 2} n^{10} = -2 m^{22} n^{10} $$ |