Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-9+5i)\cdot(-5-7i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}45+63i-25i-35i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-35i^2+38i+45\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-9+5i}\right) $ by each term in $ \left( -5-7i\right) $. $$ \left( \color{blue}{-9+5i}\right) \cdot \left( -5-7i\right) = 45+63i-25i-35i^2 $$ |
| ② | Combine like terms: $$ 45+ \color{blue}{63i} \color{blue}{-25i} -35i^2 = -35i^2+ \color{blue}{38i} +45 $$ |