Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-8-12i)\cdot(7+8i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-56-64i-84i-96i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-96i^2-148i-56\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-8-12i}\right) $ by each term in $ \left( 7+8i\right) $. $$ \left( \color{blue}{-8-12i}\right) \cdot \left( 7+8i\right) = -56-64i-84i-96i^2 $$ |
| ② | Combine like terms: $$ -56 \color{blue}{-64i} \color{blue}{-84i} -96i^2 = -96i^2 \color{blue}{-148i} -56 $$ |