Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-6-i)\cdot(5+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-30-12i-5i-2i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2i^2-17i-30\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-6-i}\right) $ by each term in $ \left( 5+2i\right) $. $$ \left( \color{blue}{-6-i}\right) \cdot \left( 5+2i\right) = -30-12i-5i-2i^2 $$ |
| ② | Combine like terms: $$ -30 \color{blue}{-12i} \color{blue}{-5i} -2i^2 = -2i^2 \color{blue}{-17i} -30 $$ |