Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-6-5i)\cdot(-3+6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}18-36i+15i-30i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-30i^2-21i+18\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-6-5i}\right) $ by each term in $ \left( -3+6i\right) $. $$ \left( \color{blue}{-6-5i}\right) \cdot \left( -3+6i\right) = 18-36i+15i-30i^2 $$ |
| ② | Combine like terms: $$ 18 \color{blue}{-36i} + \color{blue}{15i} -30i^2 = -30i^2 \color{blue}{-21i} +18 $$ |