Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-4+4i)\cdot(3+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-12-8i+12i+8i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8i^2+4i-12\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-4+4i}\right) $ by each term in $ \left( 3+2i\right) $. $$ \left( \color{blue}{-4+4i}\right) \cdot \left( 3+2i\right) = -12-8i+12i+8i^2 $$ |
| ② | Combine like terms: $$ -12 \color{blue}{-8i} + \color{blue}{12i} +8i^2 = 8i^2+ \color{blue}{4i} -12 $$ |