Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-4i-8)(-i-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4i^2+16i+8i+32 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4i^2+24i+32\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-4i-8}\right) $ by each term in $ \left( -i-4\right) $. $$ \left( \color{blue}{-4i-8}\right) \cdot \left( -i-4\right) = 4i^2+16i+8i+32 $$ |
| ② | Combine like terms: $$ 4i^2+ \color{blue}{16i} + \color{blue}{8i} +32 = 4i^2+ \color{blue}{24i} +32 $$ |