Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-4i-2)\cdot(-4+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16i-8i^2+8-4i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8i^2+12i+8\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-4i-2}\right) $ by each term in $ \left( -4+2i\right) $. $$ \left( \color{blue}{-4i-2}\right) \cdot \left( -4+2i\right) = 16i-8i^2+8-4i $$ |
| ② | Combine like terms: $$ \color{blue}{16i} -8i^2+8 \color{blue}{-4i} = -8i^2+ \color{blue}{12i} +8 $$ |