Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-3+2i)\cdot(-6-8i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}18+24i-12i-16i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-16i^2+12i+18\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-3+2i}\right) $ by each term in $ \left( -6-8i\right) $. $$ \left( \color{blue}{-3+2i}\right) \cdot \left( -6-8i\right) = 18+24i-12i-16i^2 $$ |
| ② | Combine like terms: $$ 18+ \color{blue}{24i} \color{blue}{-12i} -16i^2 = -16i^2+ \color{blue}{12i} +18 $$ |