Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-3i+6)\cdot(-3+6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9i-18i^2-18+36i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-18i^2+45i-18\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-3i+6}\right) $ by each term in $ \left( -3+6i\right) $. $$ \left( \color{blue}{-3i+6}\right) \cdot \left( -3+6i\right) = 9i-18i^2-18+36i $$ |
| ② | Combine like terms: $$ \color{blue}{9i} -18i^2-18+ \color{blue}{36i} = -18i^2+ \color{blue}{45i} -18 $$ |