Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-2i)^3\cdot4i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-8i^3\cdot4i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-32i^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-32\end{aligned} $$ | |
| ① | $$ \left( -2i \right)^3 = (-2)^3i^3 = -8i^3 $$ |
| ② | $$ -8 i^3 \cdot 4 i = -32 i^{3 + 1} = -32 i^4 $$ |
| ③ | $$ -32i^4 = -32 \cdot i^2 \cdot i^2 =
-32 \cdot ( - 1) \cdot ( - 1) =
-32 $$ |